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Abstract. In non-relativistic quantum mechanics, singular potentials in problems with spherical
symmetry lead to a Schrödinger equation for stationary states with non-Fuchsian singularities
both asr → 0 and asr → ∞. In the 1960s, an analytic approach was developed for
the investigation of scattering from such potentials, with emphasis on the polydromy of the
wavefunction in ther-variable. This paper extends those early results to an arbitrary number
of spatial dimensions. The Hill-type equation which leads, in principle, to the evaluation of
the polydromy parameter, is obtained from the Hill equation for a two-dimensional problem by
means of a simple change of variables. The asymptotic forms of the wavefunction asr → 0 and
as r → ∞ are also derived. The Darboux technique of intertwining operators is then applied
to obtain an algorithm that makes it possible to solve the Schrödinger equation with a singular
potential admitting a Laurent expansion, if the exact solution with even just one term is already
known.

1. Introduction

One of the long-standing problems of non-relativistic quantum mechanics is the investigation
of scattering from singular potentials, with efforts by many authors over several decades
(see [1–15] and references therein). The main motivations can be described as follows [13].

(i) Repulsive singular potentials make it possible to obtain a fairly accurate description
of the short-range part of the nucleon–nucleon interaction.

(ii) The (p,p) and(p, π) processes can be interpreted in terms of complex potentials
r−n, with n > 2.

(iii) Repulsive singular potentials reproduce also the interactions of nucleons with K-
mesons, andα–α scattering processes.

(iv) The Lennard-Jones potential, proportional tor−12, can be used to study interactions
among the overlapping electron clouds of non-polar molecules.

(v) At a field-theoretical level, it appears quite remarkable that non-renormalizable field
theories give rise to effective potentials in the Bethe–Salpeter equation which are singular
[1, 2], whereas superrenormalizable and renormalizable field theories give rise to regular
or transition-type effective potentials, respectively. There was therefore the hope that any
new insight gained into the analysis of non-relativistic potential scattering in the singular
case, could be eventually used to obtain a better understanding of quantum field theories
for which perturbative renormalization fails (cf section 6).

(vi) In particular, one might then hope to be able to ‘map’ the analysis of quantum
gravity based on the Einstein–Hilbert action (plus boundary terms), which is well known to
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be incompatible with the requirement of perturbative renormalizability [16], into a scattering
problem in the singular case, for which the Schrödinger equation for stationary states:[

d2

dr2
+ (q − 1)

r

d

dr
− l(l + q − 2)

r2
+ k2

]
ψ(r) = V (r)ψ(r) (1.1)

has non-Fuchsian singularities (see the appendix) both asr → 0 and asr → ∞. With
our notation,q is the number of spatial dimensions, andl(l + q − 2) is obtained by
studying the action of the Laplace–Beltrami operator on wavefunctions belonging to the
tensor product [17]

L2(R+, rq−1 dr)⊗ L2(Sq−1, d�).

Moreover, with a standard notation, one has (of course, the energyE is positive in a
scattering problem)

k2 ≡ 2mE

h̄2 (1.2)

V (r) ≡ 2m

h̄2 U(r) (1.3)

with U(r) the potential term in the original form of the Schrödinger equation. From now
on, it is V (r) which will be referred to asthe potential, following the convention in the
literature.

Among the analytic results obtained so far in the investigation of potential scattering in
the singular case, we find it appropriate to mention what follows.

(i) A constructive determination of theS-matrix, based on the polydromy properties
of the wavefunction (see the appendix) and on the Hill equation for the polydromy
parameter [6, 8].

(ii) Perturbative technique for the potentialV (r) ≡ g2r−4 in three dimensions, by
re-expressing the radial Schrödinger equation as a modified Mathieu equation [10], with
evaluation ofS-matrix and Regge poles.

(iii) Generalized variable-phase approach, leading to a JWKB phase-shift formula [13].
(iv) Generalization of the JWKB method to arbitrary order, with rigorous error

bounds [14].
In this paper, sections 2 and 3 apply the method of [6, 8] to the Schrödinger equation for

stationary states in three or more spatial dimensions, proving that a simple but deep relation
exists between the corresponding Hill equations in two and three or more spatial dimensions.
Section 4 presents, for completeness, the JWKB analysis of the wavefunction, jointly with
its limiting behaviour asr → 0 and asr → ∞. Section 5 studies the application of the
intertwining operator technique to singular potential scattering. Results and open problems
are described in section 6.

2. Schr̈odinger equation for stationary states

Following the remarks in the introduction, we first study the Schrödinger equation for
stationary states in three spatial dimensions in a central potential:[

d2

dr2
+ 2

r

d

dr
− l(l + 1)

r2
+ k2

]
ψ(r) = V (r)ψ(r). (2.1)

What is crucial is the polydromy of the wavefunction in ther variable. Indeed, if the
potentialV (r) is a single-valued function ofr, one can find two independent solutions

ψ1(r) = rγ χ1(r) (2.2)
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ψ2(r) = r−γ χ2(r) (2.3)

where χ1 and χ2 are single-valued functions ofr, and γ is a parameter which can
be determined from a transcendental equation (see below). The general solution of
equation (2.1) is therefore of the form

ψ(r) = α1ψ1(r)+ α2ψ2(r). (2.4)

Remarkably, one can compute directlyχ1(r) andχ2(r) and study their behaviour asr → 0
and asr → ∞ [6, 8]. For this purpose, the following Laurent expansions are used (the
subscript forχ is omitted for simplicity):

W(r) ≡ r2[V (r)− k2] =
∞∑

n=−∞
wnr

n r ∈]0,∞[ (2.5)

χ(r) =
∞∑

n=−∞
cnr

n r ∈]0,∞[. (2.6)

These expansions hold becauseV (r) is assumed to be an analytic function in the complex-r

plane, with singularities only at infinity and at the origin [6, 8]. The Laurent series (2.5) and
(2.6) are now inserted into equation (2.1), which is equivalent to the differential equation (cf
[6, 8])

r2 d2χ

dr2
+ 2(γ + 1)r

dχ

dr
+ (γ (γ + 1)− l(l + 1))χ = r2[V (r)− k2]χ. (2.7)

One thus finds the following infinite system of equations for the coefficients (cf [8]):

[(n+ γ )(n+ γ + 1)− λ̄2]cn =
∞∑

m=−∞
ūn−mcm (2.8)

where

λ̄2 = l(l + 1)+ w0 (2.9)

ūn = wn − w0δn,0. (2.10)

To solve the system (2.8) one first writes an equivalent system for which the determinant
of the matrix of coefficients is well defined. Such a new system is obtained from (2.8) by

dividing thenth equation by(n+ γ )(n+ γ + 1)− λ2
. The resulting matrix of coefficients

has elements

Hn,m = δn,m − un−m
[(n+ γ )(n+ γ + 1)− λ̄2]

(2.11)

where det(H) exists since the double series∑
n,m

un−m
[(n+ γ )(n+ γ + 1)− λ̄2]

converges for all values ofγ which do not correspond to zeros of the denominator. At this
stage one can appreciate the substantial difference between regular and singular potentials.
In the former case,un is non-vanishing only for positiven. In the singular case, however,
the presence of negative powers in the Laurent series (2.5) givesγ as the solution of a
transcendental equation, i.e. (the vanishing of det(H) being necessary and sufficient to find
non-trivial solutions of the system (2.8))

F(γ ) ≡ det(H) = 0. (2.12)
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3. Equation for the γ parameter

To evaluateF(γ ), we point out that, on defining

γ̃ ≡ γ + 1
2 (3.1)

λ̃2 ≡ λ̄2+ 1
4 = (l + 1

2)
2+ w0 (3.2)

one finds

(n+ γ )(n+ γ + 1)− λ̄2 = (n+ γ̃ )2− λ̃2. (3.3)

This simple but fundamental property makes it possible to perform the three-dimensional
analysis by relying entirely on the investigation in two spatial dimensions, becauseHn,m
now reads

Hn,m = δn,m − ūn−m
[(n+ γ̃ )2− λ̃2]

(3.4)

and hence, from the work in [6, 8], one knows that

F(γ̃ ) = 1+ [F(0)− 1]
[cotπ(γ̃ + λ̃)− cotπ(γ̃ − λ̃)]

2 cotπλ̃
(3.5)

whereF is an even periodic function of̃γ , with unit period [8]. The equation

F(γ̃ ) = 0 (3.6)

is, as we said in section 2, a transcendental equation. If a root, sayx, is known, at least
approximately, one can then evaluate the desiredγ parameter from the definition (3.1) as

γ = x − 1
2. (3.7)

The ground is now ready for understanding the key features of singular potential
scattering in an arbitrary number of spatial dimensions. For this purpose, we remark that,
upon settingψ(r) = rγ χ(r), equation (1.1) leads to the following second-order equation
for χ (cf (2.7)):[
r2 d2

dr2
+ (2γ + q − 1)r

d

dr
+ (γ 2+ (q − 2)γ − l(l + q − 2))

]
χ(r) = W(r)χ(r). (3.8)

Thus, on defining (cf (3.1))

γ̃ ≡ γ + 1
2(q − 2) (3.9)

one can re-express equation (3.8) in the form[
r2 d2

dr2
+ (2γ̃ + 1)r

d

dr
+ (γ̃ 2− 1

4(q − 2)2− l(l + q − 2))

]
χ(r) = W(r)χ(r). (3.10)

At this stage, the Laurent expansions (2.5) and (2.6) lead to an infinite system of equations
for the coefficientscn in the form (cf (2.8))

[(n+ γ̃ )2− λ̃2]cn =
∞∑

m=−∞
un−mcm (3.11)

where we have defined (cf (3.2))

λ̃2 ≡ l(l + q − 2)+ 1
4(q − 2)2+ w0 = (l + 1

2(q − 2))2+ w0 (3.12)

whereas the notation (2.10) remains unchanged. Thus, one can always perform the analysis
in terms of the infinite matrix (3.4), provided that one definesγ̃ andλ̃2 as in (3.9) and (3.12),
respectively. The resulting Hill-type equation which leads, in principle, to the evaluation
of the fractional part of the polydromy parameterγ , involves an even periodic function
of γ + 1

2(q − 2).
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4. Asymptotic form of the solutions

Since one might be eventually interested in theS-matrix, it is quite important to study the
limiting behaviour of stationary states asr → 0 and asr → ∞. In the former case, one
can perform a JWKB analysis of equation (1.1), setting therein

ψ(r) = A(r)ei
h̄
S(r). (4.1)

This leads to the equation (the prime denoting differentiation with respect tor)[
(2m(E − U(r))− S ′2)A+ ih̄

(
2A′S ′ + AS ′′ + (q − 1)

r
AS ′

)
+ h̄2

(
A′′ + (q − 1)

r
A′ − l(l + q − 2)

r2
A

)]
= 0. (4.2)

If, in a first approximation, the term on the second line ofequation (4.2) is neglected, one
finds the equations

S ′2 = 2m(E − U(r)) (4.3)
d

dr
(A2S ′)+ (q − 1)

r
A2S ′ = 0 (4.4)

which imply

S ′ = ±
√

2m(E − U(r)) (4.5)

A2S ′ = constant× r−(q−1) (4.6)

and hence, for some constantβ,

A(r) = βr− (q−1)
2 (2m(E − U(r)))− 1

4 . (4.7)

To second order in ¯h, one has to consider the second line of equation (4.2). On taking
the prefactorA(r) in the form (4.7), one has then to evaluate the phaseS(r) from the
equation

S ′(r) = ±
√

2m(E − U(r))+ h̄2flq(A(r)) (4.8)

where

flq(A(r)) ≡ A′′

A
+ (q − 1)

r

A′

A
− l(l + q − 2)

r2

= − [ 1
4(q

2− 4q + 3)+ l(l + q − 2)]r−2

+m
2U
′′(2m(E − U(r)))−1+ 5

4m
2U ′2(2m(E − U(r)))−2. (4.9)

Only an approximate calculation of the square root in equation (4.8) is possible, if

ρ ≡ h̄2flq(A(r))

2m(E − U(r)) � 1

by expanding
√

1+ ρ in powers of ρ, but this does not improve substantially the
understanding of the behaviour of the wavefunction asr → 0 for a fixed value ofk
(see below), and hence we do not present further calculations along these lines. One should
bear in mind, however, that the JWKB expansion has an asymptotic nature, and rigorous
error bounds can be obtained [14].

In particular, in the physically more relevant case of three spatial dimensions,
equation (4.7) leads to (see (1.2) and (1.3))

A(r) = β̃r−1(k2− V (r))− 1
4 . (4.10)
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When r → 0, V (r) is much larger thank2 for a fixed valueof k, and hence the JWKB
ansatz (4.1) leads to (hereafter ¯h = 1)

ψI,II ∼ BI,II r−1(V (r))−
1
4 exp

∫ r0

r

√
V (y) dy (4.11)

for some parametersBI,II depending onγ and l (cf [6, 8, 18]). Of course, the JWKB
solution forall values of k which results from (4.5) and (4.10) is, instead,

ψI,II ∼ β̃I,II r−1(k2− V (r))− 1
4 exp

[
i
∫ r

r0

√
k2− V (y) dy

]
. (4.12)

Moreover, asr →∞, one has the familiar asymptotic behaviour

ψI,II ∼ A+I,II r−1 exp
{

i
[
kr − l π

2

]}
+ A−I,II r−1 exp

{
−i
[
kr − l π

2

]}
. (4.13)

The S-matrix is given by the formula [6, 8]

S = (A+I BII − A+IIBI )
(A−I BII − A−IIBI )

(4.14)

where theA andB parameters are the ones occurring in the asymptotic expansions (4.11)
and (4.13), and can be obtained by means of the saddle-point method [6, 8].

5. Intertwining operators for singular potentials

Since exact solutions of singular scattering problems in terms of special functions are known
in a few cases only, it appears quite important to look for a technique that makes it possible
to generate solutions for complicated problems, relying on what is known in simpler cases.
For this purpose, we here consider the Darboux method of intertwining operators [19–22].

The aim of the Darboux method is to generate families of isospectral Hamiltonians. It
relies on a theorem which, in modern language, can be stated as follows [23]. Letψ be the
general solution of the Schrödinger equation

Hψ(x) ≡
[
− d2

dx2
+ V (x)

]
ψ(x) = Eψ(x). (5.1)

If ϕ is a particular solution of (5.1) corresponding to an energy eigenvalueε 6= E, then

ψ̃ = 1

ϕ

(
ψ

dϕ

dx
− dψ

dx
ϕ

)
(5.2)

is the general solution of the Schrödinger equation

H̃ ψ̃(x) = Eψ̃(x) (5.3)

where

H̃ ≡ − d2

dx2
+ Ṽ (x) (5.4)

Ṽ (x) ≡ V (x)− 2
d2

dx2
logϕ(x). (5.5)

In other words, if two Hamiltonian operators, sayHA andHB , are given, one looks for
a differential operator, sayD, such that [24]

HBD = DHA. (5.6)
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It is then possible to relate the eigenfunctions ofHA andHB by using the action ofD (see
below). Here, we focus on one-dimensional problems, with

HA = H0 ≡ − d2

dx2
+ V0(x) (5.7)

HB = H1 ≡ − d2

dx2
+ V1(x) (5.8)

D ≡ d

dx
+G(x) (5.9)

whereV0 andV1 are the ‘potential’ functions, andG is another function, whose form is
determined by imposing the condition (5.6). This reads, explicitly,(

− d2

dx2
+ V1

)(
d

dx
+G

)
f =

(
d

dx
+G

)(
− d2

dx2
+ V0

)
f (5.10)

for all functionsf which are at least of classC3. On imposing equation (5.10), one finds
exact cancellation of the terms− d3f

dx3 and−G d2f

dx2 , since they occur on both sides with the
same sign. Hence one deals with the equation[

(−2G′ + V1− V0)
d

dx
+ (−G′′ − V ′0 + (V1− V0)G)

]
f = 0 (5.11)

which implies

2G′ = V1− V0 (5.12)

−G′′ − V ′0 + (V1− V0)G = 0 (5.13a)

by virtue of the arbitrariness off . It is now possible to use equation (5.12) to express
equation (5.13a) in the form

d

dx
(−G′ +G2) = d

dx
V0 (5.13b)

which is solved by

G2−G′ = V0+ C (5.14)

for some constantC. Equation (5.14) is known as the Riccati equation. Its nonlinear nature
makes it desirable to develop an algorithm to relate it, instead, to the solution of a linear
problem. This is indeed achieved by considering the functionϕ such that

G = − d

dx
logϕ. (5.15)

The equations (5.12) and (5.15) are, of course, in complete agreement with the result (5.5),
with Ṽ replaced byV1, andV replaced byV0. One then finds, by virtue of (5.14) and
(5.15), thatϕ obeys the linear second-order equation

H0ϕ = −Cϕ. (5.16)

This is a simple but deep result: one first has to find the eigenfunctions ofH0, say ϕ,
belonging to the eigenvalue−C. Once this is achieved, the desired functionG is obtained
from (5.15), and hence the intertwining operator is

D = d

dx
− ϕ

′

ϕ
. (5.17)
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In the applications, it is also convenient to use equation (5.12) to express equation (5.14)
in the form

G2+G′ = V1+ C. (5.18)

If one studies equation (1.1) or, in particular, equation (2.1), the standard definition in
three dimensions

ψ(r) ≡ y(r)

r
(5.19)

leads to a second-order differential operator acting ony which is of the form (5.7) or (5.8).
However, the choice of a suitable intertwining operator, aimed at relating operatorsHA and
HB whose potential terms differ in a somehow substantial way, is a non-trivial task. For
example, if one considers

V1(r) ≡ A

r4
+ B

r3
(5.20)

equation (5.18) may be then satisfied by (cf (5.9))

G(r) = k

r2
(5.21)

provided thatA = k2, B = −2k andC = 0. However, the resulting potentialV0(r) is
found to be, from equation (5.12),

V0(r) = k2

r4
+ 2k

r3
(5.22)

so that the intertwining operator ends up by relating operatorsHA andHB whose potential
terms have precisely the same functional form. A scheme of broader validity, however, is
obtained by looking forV1(r) andG(r) in the form of (Laurent) series, i.e.

V1(r) =
∞∑

n=−∞
anr

n (5.23)

G(r) =
∞∑

p=−∞
bpr

p. (5.24)

The insertion of (5.23) and (5.24) into equation (5.18) leads to the infinite system

(n+ 1)bn+1+
∞∑

p=−∞
bpbn−p = an + Cδn,0 (5.25)

that should be solved, in principle, forbn, for all n. One then finds, from equation (5.12),
a Laurent series forV0 as well, i.e.

V0(r) =
∞∑

n=−∞
fnr

n (5.26)

where

fn = −(n+ 1)bn+1+
∞∑

p=−∞
bpbn−p − Cδn,0. (5.27)

For example, if one takesV1(r) ≡ g2r−4, one has

an = g2δn,−4 (5.28)
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and hence one deals with the infinite system

(n+ 1)bn+1+
∞∑

p=−∞
bpbn−p = g2δn,−4+ Cδn,0. (5.29)

This is a nonlinear algebraic system for which it does not seem possible to obtain a solution
such that only a fewbp coefficients are non-vanishing. For example, if one tries to get
bp = 0 unlessp = −3,−2,−1, one finds, on settingn = −6,−5,−4,−3,−2, 0 in (5.29)
the six equations

(b−3)
2 = 0 (5.30)

2b−3b−2 = 0 (5.31)

−3b−3+ 2b−3b−1+ (b−2)
2 = g2 (5.32)

2(b−1− 1)b−2 = 0 (5.33)

(b−1− 1)b−1 = 0 (5.34)

0= C (5.35)

whereasn = −1 leads to a trivial identity. Now equations (5.30) and (5.31) imply that
b−3 = b−2 = 0, and henceg2 = 0 from (5.32), which is incompatible with our assumptions.
The remaining equations (5.33)–(5.35) allow forb−1 = 1, further tob−1 = 0, but with
C = 0.

However, the implications remain of high interest: to find non-trivial solutions with
g2 6= 0 andC 6= 0 one needs a large number ofbp coefficients (maybe infinitely many),
including those withp > 0. This still means that one has the opportunity to solve
the Schr̈odinger equation with a complicated singular potential, starting from what one
knows when the potential equalsg2r−4 [8]. For this purpose, on denoting again byϕ the
eigenfunction ofH0 belonging to the eigenvalue−C, and byχ ≡ Dϕ the eigenfunction
of H1 belonging to the same eigenvalue, we notice that the desiredϕ can be written in the
form

ϕ(r) =
∫ ∞

0
K(r, r ′)χ(r ′) dr ′ (5.36)

whereK(r, r ′) denotes the Green kernel of the intertwining operatorD ≡ d
dr +G(r). We

need such an integral formula because we have chosen, in our particular example, the form
of the potential termV1(r) in the HamiltonianH1, for which the scattering states are already
known in the literature [8]. The unknown are instead the scattering states resulting from
the Hamiltonian operator with potential term equal toV0(r) (see (5.26)).

6. Concluding remarks

Our paper has studied some aspects of scattering from singular potentials in quantum
mechanics. Its contributions are as follows.

(i) The technique of Fubini and Stroffolini [6, 8], with emphasis on the polydromy
properties of the wavefunction, has been applied to an arbitrary number of spatial
dimensions, sayq, when the potential admits a Laurent series expansion. The equation
obeyed by the polydromy parameter,γ , involves a function which is an even periodic
function of γ + 1

2(q − 2). Interestingly, one can rely entirely on the analysis performed
in [6, 8], provided that one considers the parameters defined in (3.9) and (3.12) (strictly,
the authors of [6, 8] start from three dimensions, but use a transformation [9] leading to an
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equation formally analogous to the radial part of the stationary Schrödinger equation in two
dimensions).

(ii) The Darboux technique of intertwining operators has been applied to relate the
singular potential terms in the Schrödinger equation for stationary states. The algorithm
resulting from equations (5.23)–(5.27) leads, in particular, to the nonlinear algebraic system
(5.29) if the potentialV1 is taken to beg2r−4.

Ultimately, one might want to use these properties to study quantum field theories which
are not perturbatively renormalizable, according to the original motivations for this research
field [1, 2, 9]. For this purpose, it seems crucial, to us, to consider the quantum gravity
problem, focusing (at least) on the following questions.

(i) What is the counterpart, in quantum gravity, of the Bethe–Salpeter equation
containing effective potentials of the singular type? As is well known, this equation arises
in the course of studying the quantum theory of relativistic bound states, and unfortunately
a simple extension of the Schrödinger equation is not available [25]. Even on neglecting
curvature effects due to gravitational fields, one then faces retardation effects which lead
to an extra relative time variable in the problem [25]. An alternative description uses a
mediating field, whose quantum properties, however, cannot be ignored [25]. When a
quantum theory of gravity is considered in a spacetime approach [26], one may expect
to be able to use the (formal) theory of the effective action, with a corresponding set of
integro-differential equations. These should be solved, in principle, by using the functional
calculus. But even if one were able to achieve so much, and hence derive an effective
potential which is a gravitational counterpart of the potential normally used to reduce the
number of degrees of freedom of relativistic bound-state problems, the problem of giving a
proper interpretation of such potentials would remain, since they seriously affect the exact
theory and may introduce fictitious singularities (see p 493 of [25]).

(ii) What kind of results can be then ‘imported’ on mapping quantum gravity into a
scattering problem from singular potentials (e.g. the asymptotic behaviour of the phase shift
[9, 13], the exact or approximate solutions derived with some particular choices of singular
potentials [1–8, 10, 14], or the existence theorem for the wave operators [12])?

(iii) How fundamental is the Darboux method of intertwining operators [19–22] proposed
in section 5? Since the variable phase approach to potential scattering also relies on a
Riccati-type equation [7], such a question appears to be non-trivial.

The above issues seem to point out that new perspectives are in sight in the analysis of
potential scattering for a wide class of singular potentials, with possible implications for a
long-standing problem, i.e. the key features of a quantum theory of the gravitational field
(see [16] and references therein). Hence we hope that this paper, although devoted to some
technical issues, may lead to a thorough investigation of quantum gravity from a point of
view well-grounded in the general framework of modern high energy physics (cf [27]).
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Appendix

To be self-contained, let us describe what is meant by Fuchsian singularities of second-order
differential equations. A theorem due to the German mathematician Immanuel Lazarus
Fuchs states that a necessary and sufficient condition for the linear equation[

d2

dx2
+ p1(x)

d

dx
+ p2(x)

]
y(x) = 0 (A1)

to admit a fundamental system of integrals, sayy1(x) andy2(x), which, in the neighbourhood
of the singular pointx0, can be expressed as (withϕ1, ϕ2, ψ analytic functions in the
neighbourhood ofx0, for some constantsr1, r2, r̃1, A and(r1− r2) 6∈ Z)

y1(x) = (x − x0)
r1ϕ1(x) (A2a)

y2(x) = (x − x0)
r2ϕ2(x) (A2b)

or

y1(x) = (x − x0)
r̃1ϕ1(x) (A3a)

y2(x) = y1(x)[A log(x − x0)+ ψ(x)] (A3b)

is thatp1 andp2 should have poles of order6 1 and6 2, respectively, at the singular point
x0. One then says thatx0 is a Fuchsian singularityfor equation (A1).

To study the point at infinity, one defines

ξ ≡ 1

x
(A4)

which leads to the equation (cf (A1)){
d2

dξ2
+
[

2

ξ
− 1

ξ2
p1

(
1

ξ

)]
d

dξ
+ 1

ξ4
p2

(
1

ξ

)}
y(ξ) = 0. (A5)

In the analysis of equation (A5) asξ → 0, which corresponds to the point at infinity of
(A1), one can thus use again the Fuchs theorem, which implies thatp1(

1
ξ
) andp2(

1
ξ
) should

have zeros of degree> 1 and> 2, respectively, atξ = 0. If this condition is fulfilled,
equation (A1) is said to beFuchsian at infinity.

When all singular points are Fuchsian, the corresponding differential equation is said
to be totally Fuchsian. The non-Fuchsian singularitiesare, by contrast, singular points of
(A1) for which the above conditions on poles and zeros of the functionsp1 andp2 are not
fulfilled.

In this paper, the wordpolydromyrefers to the well known property of some functions
of complex variable being multivalued functions of the independent variable. For example,
if z is complex, its logarithm is given by the formula

log(z) = log |z| + i arg(z). (A6)
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